| To address this design issue: | The pipeline segment must meet these additional requirements: | | |-------------------------------|--|--| | | (2) If research, testing and field monitoring tests demonstrate that the coating type being used will withstand a higher temperature in long-term operations, the compressor station may be designed to limit downstream piping to that higher temperature. Test results and acceptance criteria addressing coating adhesion, cathodic disbondment, and coating condition must be provided to each PHMSA pipeline safety regional office where the pipeline is in service at least 60 days prior to operating above 120 degrees Fahrenheit (49 degrees Celsius). An operator must also notify a State pipeline safety authority when the pipeline is located in a State where PHMSA has an interstate agent agreement, or an intrastate pipeline is regulated by that State. (3) Pipeline segments operating at alternative MAOP may operate at temperatures above 120 degrees Fahrenheit (49 degrees Celsius) if the operator implements a long-term coating integrity monitoring program. The monitoring program must include examinations using direct current voltage gradient (DCVG), alternating current voltage gradient (ACVG), or an equivalent method of monitoring coating integrity. An operator must specify the periodicity at which these examinations occur and criteria for repairing identified indications. An operator must submit its long-term coating integrity monitoring program to each PHMSA pipeline safety regional office in which the pipeline is located for review before the pipeline segments may be operated at temperatures in excess of 120 degrees Fahrenheit (49 degrees Celsius). An operator must also notify a State pipeline safety authority when the pipeline is located in a State where PHMSA has an interstate agent agreement, or an intrastate pipeline is regulated by that State. | | [73 FR 62175, Oct. 17, 2008, as amended by Amdt. 192-111, 74 FR 62505, Nov. 30, 2009] ## \S 192.113 Longitudinal joint factor (E) for steel pipe. The longitudinal joint factor to be determined in accordance with the folused in the design formula in 992.105 is lowing table: | Specification | Pipe class | Longitudinal joint factor (E) | |-------------------|---|-------------------------------| | ASTM A 53/A53M | Seamless | 1.00 | | | Electric resistance welded | 1.00 | | | Furnace butt welded | .60 | | ASTM A 106 | Seamless | 1.00 | | ASTM A 333/A 333M | Seamless | 1.00 | | | Electric resistance welded | 1.00 | | ASTM A 381 | Double submerged arc welded | 1.00 | | ASTM A 671 | Electric-fusion-welded | 1.00 | | ASTM A 672 | Electric-fusion-welded | 1.00 | | ASTM A 691 | Electric-fusion-welded | 1.00 | | API 5 L | Seamless | 1.00 | | | Electric resistance welded | 1.00 | | | Electric flash welded | 1.00 | | | Submerged arc welded | 1.00 | | | Furnace butt welded | .60 | | Other | Pipe over 4 inches (102 millimeters) | .80 | | Other | Pipe 4 inches (102 millimeters) or less | .60 | If the type of longitudinal joint cannot be determined, the joint factor to be used must not exceed that designated for "Other." [Amdt. 192–37, 46 FR 10159, Feb. 2, 1981, as amended by Amdt. 192–51, 51 FR 15335, Apr. 23, 1986; Amdt. 192–62, 54 FR 5627, Feb. 6, 1989; 58 FR 14521, Mar. 18, 1993; Amdt. 192–85, 63 FR 37502, July 13, 1998; Amdt. 192–94, 69 FR 32894, June 14, 2004] ## \$192.115 Temperature derating factor (T) for steel pipe. The temperature derating factor to be used in the design formula in § 192.105 is determined as follows: | Temperature derating factor (T) | |---------------------------------| | 1.000 | | 0.967 | | 0.933 | | 0.900 | | 0.867 | | |